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The collapse of a non-hemispherical bubble attached 
to a solid wall 

By A. SHIMA AND K. NAKAJIMA 
Institute of High Speed Mechanics, Tbhoku University, Sendai, Japan 

(Received 25 March 1976 and in revised form 10 September 1976) 

The problem of the collapse of a vapourlgas bubble attached to a solid wall and 
initially perturbed from a hemispherical shape is solved numerically by the varia- 
tional method, in which the bubble’s viscosity and compressibility in liquid are 
neglected. The effects of surface tension on the collapsing bubble are taken into 
account. The rebounding processes of a non-hemispherical gas bubble are simulated: 
the gas inside the bubble undergoes an adiabatic process. The results of numerical 
calculations are given for two initial shapes: one is close to a prolate spheroid, the 
other is close to an oblate spheroid. The governing equations for the motion of a 
bubble can be written in matrix form, which is simpler than that derived from per- 
turbation theory. This analysis using the variational method may be applied to more 
complicated problems. 

1. Introduction 
Minute nuclei containing undissolved gas and/or vapour in liquid grow in regions of 

low pressure and cause cavitation. Cavitation damage results from the collapse of 
these bubbles in regions of high pressure. Therefore studies of the mechanism of 
cavitation damage have mostly been concerned with explaining the destructive action 
brought about by the collapse of a bubble. Rayleigh (1  91 7) solved the problem of the 
collapse of a spherical bubble in a homogeneous, inviscid, incompressible liquid under 
a constant ambient pressure. His analysis suggests that cavitation damage is due to 
the high pressures developed near a spherical cavity. 

From their observations of the behaviour of a cavitation bubble produced by a 
magnetostriction oscillator, however, Kornfeld & Suvorov (1  944) found that cavities 
could not retain a spherical or hemispherical shape in the course of their collapse, as 
Rayleigh’s theory had assumed, since they very easily lost stability of shape. Con- 
sequently, Kornfeld & Suvorov suggested that the impact of liquid jets formed during 
the collapse of cavitation bubbles might be responsible for cavitation damage. 

AS to the stability of the spherical shape of a vapour cavity, Plesset (1954) and 
Plesset & Mitchell (1955) demonstrated for the collapsing cavity that, as the mean 
radius R approaches zero, the distortion, which oscillates, increases in amplitude like 
R-*. On the basis of these results, Naud6 & Ellis ( 1  961) analysed theoretically microjet 
formation in a non-hemispherical cavity in contact with a solid boundary, assuming 
that the liquid was inviscid and incompressible. Their theory starts from the linearized 
perturbation theory of Plesset & Mitchell (1955), and takes the second-order effects 
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into account to improve the solution when perturba.tion to the hemispherical shape 
becomes fairly large. Their theoretical results are in good agreement with their 
experiment on the collapse of a cavity generated by electric sparks. 

In  order to study the mechanism of cavitation damage, a number of experiments 
on the collapse of bubbles generated by electric sparks have been performed by many 
investigators (Shutler & Mesler 1965; Benjamin & Ellis 1966; Hammitt et al. 1970; 
Timm & Hammitt 1971; Popoviciu 1972; Anton & Popoviciu 1972; Smith & Mesler 
1972). Each of their photographic studies shows that the collapse of a bubble near a 
solid wall, in translatory motionor in a pressure gradient, as in a venturi, is asymmetric; 
in particular a bubble collapsing in contact with a solid wall forms a liquid jet against 
the wall. But the interpretation of the mechanism of cavitation damage differs from 
one investigator to another, because it is possible that cavitation damage may be 
caused by the jet or by the high pressures developed near a bubble. 

The behaviour of a bubble collapsing in the vicinity of a solid wall has been studied 
theoretically by Rattray (1951) and by 8hima (1968). 

The problem of the behaviour of a moving gas bubble in a flow field with a pressure 
gradient has been analysed by Yeh & Yang (1968). Their analyses, in which they 
assumed an incompressible and inviscid liquid, are based on perturbation theory or 
a polynomial expansion, therefore they become invalid as the deformation of the 
bubble increases. 

From the viewpoint of mathematical analysis, the problem of non-spherical bubble 
collapse is fairly nonlinear and very complex, so that a worker cannot avoid using a 
numerical calculation method or an approximate treatment. 

Plesset and Chapman studied the numerical simulation of a bubble collapsing near 
a solid wall (Plesset & Chapman 1971) and of an initially non-spherical bubble 
collapsing in an infinite liquid (Chapman & Plesset 1972), assuming irrotational flow. 
Their numerical method was based on solving the finite-difference equation of the 
potential problem by the Liebmann iterative method. 

Mitchell & Hammitt (1973) simulated various asymmetric bubble collapses in an 
incompressible viscous liquid using a modified marker-and-cell technique. 

Both simulations are quite good but are not easy to use to investigate the behaviour 
of a bubble. From this point of view the variational method for the dynamics of 
non-spherical bubbles which Hsieh (1972) has proposed may be useful for the approxi- 
mate analysis of asymmetric bubble collapse. Taking the surface tension into account, 
in the present study the variational method was applied to the analysis of the collapse 
of a non-hemispherical bubble attached to a solid wall. The effects of surface tension 
on the collapse of a non-spherical bubble are important, especially in the case of a 
low pressure difference, a small bubble or a liquid with high surface tension. 

2. Analysis 
Let us consider the case of an axially symmetric bubble which collapses while 

attached to a solid wall. The spherical co-ordinate system shown in figure 1 is set up 
for the formulation of the problem. 

The following assumptions will be made. 

(i) The liquid is incompressible and inviscid. 
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8 = 90" 

FIGURE 1. The spherical co-ordinate system. 

(ii) The pressure inside the bubble is uniform. The ambient pressure is constant 

(iii) The gas-liquid surface tension must be taken into account. The adhesion is 

(iv) The effect of gravity is negligible. 

(v) The effect of gas diffusion and the thermal effect are negligible. 

We introduce assumption (i) to simplify the following analysis since we wish to 
study mainly the effect of surface tension on the behaviour of the bubble. In  fact, 
the effect of liquid compressibility is less important except in the final stage of the 
collapse of a small gas bubble or a vapour bubble in which the vapour remains 
saturated. Also, the viscosity of the liquid may not be very important for a bubble 
collapsing in water under atmospheric pressure if the initial bubble radius is about 
0-01 mm (Plesset & Chapman 1971). 

Assumption (iii) is inconsistent with the real conditions in the immediate vicinity 
of the triple interface. However it appears to be difficult to obtain precisely the 
contact angle in the case of bubble motion, because it may change unsteadily. There- 
fore the gas-solid and the liquid-solid surface tensions are neglected in this paper, 
as in Naud6 & Ellis (1961) and Chapman & Plesset (1972). Thus we take 90" as the 
contact angle. 

The following analysis can be applied both to a gas bubble and to a vapour bubble. 
For the case of a vapour bubble, it  is assumed that the interior of the bubble always 
remains in the saturated state corresponding to a given temperature. Then the problem 
reduces to solving Laplace's equation 

during the collapse. 

negligible. 
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where @ is the velocity potential. The following boundary conditions must be satisfied: 

where pa is the pressure in the liquid at  a great distance from the bubble, pc the 
pressure inside the bubble, p the liquid density, cr the gas-liquid surface tension and 
R, and R, the principal radii-of curvature of the bubble surface. The mean curvature is 

The remaining boundary conditions are 

r-laa/ae = o on t? = in, (5) 

@.-to as ~ 3 0 0 .  (6) 
As the initial conditions, the initial bubble shape R(8,O) is given, and aRlat = 0 is 

chosen at t = 0. 
The problem governed by (1)-(6) can be shown to be equivalent to a variational 

problem: the solution of the above boundary-value problem is given by an extremum 
of the functional 

J = 2n~~dt/o"sin8d0 [ -'dm 3 R3+crR(Rz+Ri)' 

2r2 

This can be proved as follows. The first variation gives 

"I 

Then, after integration by parts, we have 
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where we have used the boundary condition @-to  at 7300. Since the variations 
60 and SR are arbitrary, the conditions for obtaining an extremum of J lead to (1)-(6). 

The last term in (8) should be determined from the contact angle with the solid 
wall. In this case, from assumption (iii) the contact angle is in, so that R, = 0 at 8 = in. 

Taking the boundary conditions (5 )  and (6) into consideration, we chose the set 
of trial functions as 

and 

where #,, #2n, R, and R,, are time-dependent coefficients of the expansion and the 
P,,(cos 0 )  are Legendre polynomials. 

The variations of Q, and R are 

and 

Since the trial function (9) satisfies the Laplace equation ( l ) ,  by substituting 
(9)-(12) in (8) we obtain 

Since 6#,k and SR,,, are arbitrary, the extremal conditions are 

where k = 0,1, . . . , N .  In order to solve (14) and (1  5 )  for q52n and R,,, it  is convenient 
to express these equations in the following matrix form: 

M ~ P + F R  = 0, FT&+S = 0, (1% (17) 

where @ ={#o,#,,...,#2N)T, R =  {Ro,R2,..-,R2N)T, (18), (19) 

Mkn = jo tn R2n+2k+l P2k ( ( 2 n + 1 ) ~ , , + ~ -  R dp2n) ae sin 8d8, 
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From (16), we obtain 
= -M-IFk. 

By substituting (23) in (17), an equation governing the motion of the bubble can be 
obtained: 

(24) 
where 

= F-l[( M M -l F - F) R + M ( FT)-lS], 

Mkn = - f o  R2nf2k+2 P2k [ (2n + 1) (2n + 2k + 1) RP2, + (2n + 2k + 2) RR0dP2n - - - -;is] dP2n 
R de 

x sinode, (26) 

(26) 

If the initial conditions on R and R a t  t = 0 are given, the ordinary simultaneous 
different,ial equation (24) can be solved numerically. 

Assuming that t'he gas inside a gas bubble is ideal and undergoes an adiabatic 
process during the growth or collapse of the bubble, the pressure inside the bubble 
will be 

Pc = PGO[v , (O) /v , ( t ) lY ,  (27) 

where p ,  is the initial gas pressure, y is the ratio of the specific heats of the gas, and 
K ( t )  is the bubble volume at time t :  

(28) K(t)  = -&r loin R3(B, t )  sin BdB. 

On the other hand, for the case of a vapour bubble it follows that 

pc = constant. (27') 

The pressure distribution in the liquid can be obtained by substituting (9) in Bernoulli's 
equation: 

Similarly, the pressure on the bubble surface can be obtained by using the relation 

3. Results of the calculations 
All physical quantities involving length, velocity, acceleration, time, pressure and 

surface tension may be non-dimensionalized by dividing by 

respectively. We performed the calculations with all equations in dimensionless 
form. Equation (24) was numerically integrated by the Runge-Kutta-Gill method 
on the digital computer NEAC-2200-MODEL-700 in the Computer Center, T6hoku 
University. 
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FIGURE 2. Bubble surface profiles for case A ;  T' G (t/R,(O)) [ ( p ,  -pc ) /p ]* .  (a) Without 
surface tension; T a/B,(O) ( p ,  -p , )  = 0. (b)  With surface tension; T = 0.1. 

We calculated two cases of the collapse of an initially non-hemispherical bubble 
attached to a solid wall. The first of these (case A )  had a prolate initial bubble shape 
with radius 

R(8,O) = 1 +O.lP,(cosO). 

The other (case B )  had an oblate initial shape with radius 

R(8,O) = 1 - 0.1P2(cos8). (32) 

The liquid was assumed to be initially static in both cases, so that &(O, 0) = 0 was 
chosen. The calculations were carried out keeping 8 terms (up to N = 7)  in (9) and 
(10); that is, 8 equations for R,, R,, . . . , R,, were involved in (24). Although we increased 
the number of equations, we expected hardly any improvement in the solution. 
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FIUURE 3. (a)  Radii of bubble surface on the axis of symmetry and on the solid wall and the 
mean radius R,(t)/R,(O) and ( b )  velocities of the bubble surface on the axis of symmetry and on 
the solid wall all as functions of time for case A .  -, T = 0.1; ---, T = 0. 
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FIGURE 4. Bubble surface profiles for oase B (a) without surface 
tension (T = 0) and (b )  with surface tension (T = 0.1). 

The collapse of a non-hemisphericad bubble with constant internal pressure 

Figures 2-7 are concerned with the behaviour of a bubble with constant internal 
pressure collapsing when attached to a solid wall. The collapse is brought about by 
the difference between the ambient pressure p ,  and the internal pressure pc.  This 
pressure difference poo-pc is also taken to be constant. If velocities and time are 
non-dimensionalized by [ ( p ,  -p,)/p]* and Bo(0) [ ( p ,  -pc)/p]-* respectively, the char- 
acteristics of the collapse under various pressure differences will be scaled to give 
similar results. 

It is obvious from the study of Numachi (1958) that comparatively small bubbles 
play an important part in cavitation damage. It should be remembered that the 
surface tension of the liquid has an important effect on the behaviour, in particular 
the collapse of small bubbles in such cases. Now consider a bubble in water under 
atmospheric pressure. In  this case, for R, = 0.01 mm, p ,  -pc 2: lo6 dynes/cm2 and 
CT = 73 dyneslcm (at 2 O O C )  the dimensionless surface tension T = cr/RO(pm -pc)  is 
0.073. In  this work, therefore, we calculated the two cases where the dimensionless 
surface tension is 0.1 and 0 in order to study the effect of the surface tension. Figures 
2(a) and ( b )  show the time history of the bubble shape for case A without and with 
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FIGURE 5. (a) Radii of the bubble surface on the axis of summetry and on the solid wall and the 
mean radius R,(t)/R,(O) and (a) velocities of the bubble surface on the axis of symmetry and on 
the solid wall all as functions of time for case B. -, T = 0.1; ---, T = 0. 
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FIGURE 6. Pressure distributions along the axis of symmetry and along the solid wall at several 
times during collapse for case A ; (a)  without surface tension (T = 0) and (a) with surf- tension 
(T = 0.1). -, e = 0;  ---, e = goo.  

surface tension respectively. In  this case, since the velocity on the bubble surface is 
greatest at  the pole, the bubble shape changes from the prolate initial shape to an 
oblate one, and eventually this deformation will cause the formation of a jet on the 
axis of symmetry. A comparison of figure 2(a)  with figure 2 ( b )  shows that surface 
tension increases the deformation of the bubble in the final stages of collapse. On the 
concave part of the bubble surface, the liquid pressure outside the bubble is higher 
than that inside because of the negative curvature. Thus the deformation of the 
bubble tends to increase. The radii and velocities of the bubble surface on the axis of 
symmetry 8 = 0 and on the solid wall 8 = +TI in case A are shown as a function of time 
in figures 3(a)  and (b )  respectively. In  figure 3(a) the mean radius R,(t)/R,,(O) as a 
function of time is also shown. These figures clearly indicate that surface tension 
accelerates the collapse of a bubble. But surface tension may not necessarily increase 
the final velocity of the jet when it strikes the wall. 

At the end of the calculation, the velocity of the bubble surface on the axis of 
symmetry reached about 60 N 70m/s in water under a pressure difference of one 
atmosphere (1.013 bar). 

For case B, figures 4 and 5 show results similar to those for case A .  In  this case, 
the velocity on the bubble surface is a maximum on the solid wall, and the oblate 
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FIGURE 7. Coefficients in expansion of bubble radius for (a) case 
A and ( b )  case B. -, T = 0.1; ---, T = 0. 
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FIQURE 8. Bubble surface profiles at several times during collapse 
with an initial gas pressurepGo/pm = 0.2. y = 1.4, T = 0.1. 
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FIUTJRE 9. Radii of the bubble surface on the axis of symmetry and on the solid wall, the mean 
radiusR,,(.r) and the bubblevolumeE(~)asfunctionsoftime 7.7 = 1.4, T = 0*1.---,p~/p~ = 0-2; 

7 

---$ pGo/Po0 = 0. 

bubble shape is transformed into a bell shape. In  potential flow, the collapse of a nearly 
hemispherical bubble attached to a solid wall is the same problem as the collapse 
of a nearly spherical bubble with a plane of symmetry in an infinite liquid, because 
the boundary condition at the plane of symmetry in the nearly spherical case, i.e. no 
flow across that plane, is the same as that at the solid wall in the nearly hemispherical 
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FIGURE 10. Velocities of the bubble surface on the axis of symmetry and on 
the solid wall as functions of time. y = 1.4, T = 0.1. Curves as in figure 9. 

case. Moreover, there is no adhesion to the solid wall in this problem, so that nothing 
prevents the bubble surface on the solid wall from having a maximum velocity as 
well as the pole in case A .  

Figures 6 ( a )  and ( b )  show the pressure distributions along the axis of symmetry 
0 = 0 and along the solid wall 8 = Qn at several times during the collapse in case A 
without and with surface tension respectively. For the calculation of the relative 
pressure p / p m  in the liquid, the pressure p ,  inside the bubble is taken to be zero. In  
tbe ha1  stages of collapse, the pressure attains a peak value near the bubble surface, 
and decreases rapidly to p ,  with radial distance from the bubble surface. 

We find here that the pressure development along the solid wall is rather slower 
than that along the axis of symmetry. It is to be noted that the pressure on the bubble 
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several times during the collapse. p ~ , / p ,  = 0.2, T = 0.1. -, e = 0; ---, e = 900. 
FIGURE 11. Pressure distributions along the axis of symmetry and along the solid wall at 
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FIGURE 12. Pressure distributions on the bubble surface and gas pressures inside the 
bubble a t  several times. pco/pm = 0.2, y = 1.4, T = 0.1. -, PR/pm; ---, pOF/pm. 

surface is not equal to zero in the collapse with surface tension, as shown in figure 6 (b ) .  
This fact can be seen from (30); that is, under this condition, the pressure on the 
convex part of the surface is negative because of the positive curvature, while that 
on the concave part is positive because of the negative curvature. 

Figures ?(a) and (b) show the coefficients R,(t), R4(t), R6(t) and R,(t) as a function 
of R,(t) for cases A and B respectively. The results obtained by taking surface tension 
into consideration and t,he results obtained without surface tension are shown in these 
figures. Of course, the latter results are in agreement with those calculated numerica,lly 
by Chapman & Plesset (1972). Therefore it may be estimated that this variational 
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FIGURE 13. Coefficients in expansion of bubble radius as 
functions of time. p ~ / p , , ,  = 0.2, y = 1.4, T = 0.1. 

method gives about the same degree of accuracy as the finite-difference approximation 
of Chapman & Plesset. 

Although the higher-order coefficients R,, for n 2 2 are zero a t  first, their amplitude 
increases with oscillation, because of nonlinear effects, and tends to diverge as the 
mean radius approaches zero. The rates of the divergence of kzn and R,, are even 
greater. Because these terms interact in the nonlinear equations (24), their solutions 
become unstable, a t  which point the calculation was stopped. 

The behaviour of a non-hemispheical bubble with internal 
pressure undergoing an adiabatic process 

Figures 8-20 are concerned with the behaviour of a non-hemispherical bubble attached 
to a solid wall with internal gas pressure undergoing an adiabatic process. The value 
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FIUURE 14. Bubble surface profiles at  several times during the oscillation with an initial gas 
pressurepc,/p, = 0-5 and with surface tension T = 0.1; y = 1.4. 

0 1 .o 2.0 3.0 4.0 

7 

FIGURE 15. Radii of the bubble surface on the axis of symmetry and on the solid wall, the mean 
radius R0(7) and the bubble volume K(T)  as functions of time. p~,,/p, = 0.5, y = 1.4, T = 0.1. 

of y was taken to be 1-4. The initial bubble shape of case A ,  given by (31), was used in 
this calculation. 

The characteristics of the bubble collapse for an initial gas pressure pao/pm = 0.2 
and a dimensionless surface tension T (  = c ~ / R , , ( o ) p ~ )  = 0.1 are shown in figures 8-12. 
Figure 8 shows the time history ofthe bubble shape for case A .  Figure 9 shows the radii 
of the bubble surface on the axis of symmetry 0 = 0 and on the solid wall 8 = +n, 
the mean radius R,(t) and the bubble volume K(7) as a function of time. Figure 10 
shows the velocities of the bubble surface on the axis of symmetry and on the solid 
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FIGURE 16. Bubble surface profiles at several times during the oscillation with an 
initial gas p r e s s u r e p ~ , / p ~  = 0.5 without surface tension (T = 0); y = 1.4. 
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ladii of the bubble surface on the axis of symmetry and on the solid wall, the mean 
-) and the bubble volume K(7) as functions of time. p~,/p, = 0.5, y = 1.4, T = 0. 

wall as a function of time. In  figures 9 and 10 respectively, the radii and velocities of 
the bubble surface for collapse with constant internal pressure, poo/pm = 0, are also 
included. It is to be noted here that the cushioning effect of internal gas compression 
retards the collapse of a bubble, and eventually the bubble will rebound. 

Figure 11 shows pressure distributions along the axis of symmetry and along the 
solid wall at  different times during the collapse. In  comparison with figure 6 ( b ) ,  we 
note that the pressure distribution along the solid wall is in close agreement with 
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FIGURE 18. Coefficients in expansion of bubble radius as functions 
of time. p ~ , / p c o  = 0.5, y = 1.4. -, T = 0.1; ---, T = 0. 

that along the axis of symmetry in the final stages of the collapse, and that the peak 
pressure in the liquid is higher than that for collapse with constant internal pressure. 
This may be explained by the fact that kinetic energy of the liquid is transformed 
into potential energy of the gas, i.e. kinetic energy of the liquid is given to the gas, 
and causes the gas pressure to rise. 

Figure 12 shows the pressure distributions on the bubble surface calculated by 
using (30), and gas pressures inside the bubble calculated at  different times during 
the collapse. The pressure near the pole in the final stage of the collapse was higher 
than the gas pressure because of the negative curvature of the bubble surface. 

Figure 13 shows the coefficients R,, R4, RB and R, 8s a function of $]me. 
Figures 14-20 are concerned with the behaviour of the bubble for an initial gas 

pressure pG0/pm = 0.5 and a dimensionless surface tension T = 0.1 or 0. The bubble 
shape history for T = 0.1 is shown in figure 14. The radii of the bubble surface on the 
axis of symmetry 8 = 0 and on the solid wall 8 = lpr, the mean radius R0(7) and the 
bubble volume K(7) are shown in figure 15 as a function of time. The bubble undergoes 
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FIUURE 19. Velocities of the bubble surface on the axis of symmetry and on the solid 
wall as functions of time.pGo/p, = 0.5, y = 1.4. -, T = 0.1; ---, T = 0. 

the volume pulsation associated with the second mode of shape oscillation. Figure 16 
shows the bubble shape history in the case where the surface tension was not taken 
into consideration. Figure 17 shows the radii of the bubble surface at  8 = 0 and in, 
the mean radius and the bubble volume for T = 0 as a function of time. In  this case, 
the bubble tends to change from the initial prolate hemispheroid to the hemispherical 
shape during the oscillation, and undergoes only a volume pulsation. 

Accordingly, it  is to be noted that the shape oscillation is caused by surface tension. 
Figure 18 shows the variation of the coefficients R,, R, and R, with time. By taking 
the surface tension into consideration, it can be seen that these coefficients oscillate 
with increasing amplitudes. If surface tension is neglected, R,, whose initial value is 
0.1, gradually decreases without oscillation, while R, and R,, which are initially zero, 
grow only slightly. 

Figure 19 shows the variation in the velocities of the bubble surface on the axis of 
symmetry 8 = 0 and on the solid wall 8 = in as afunction of time. Figure 20 shows the 
variation of the pressure on the bubble surface at 8 = 0 and hn and the internal gas 
pressure as a function of time. These figures show that the peak values of the velocities 
and pressures on the bubble surface in the case where the surface tension is taken into 
account are considerably higher than those without it. It may be presumed that the 
energy of the deforming motion caused by surface tension contributes to the increases 
in the velocity and pressure on the bubble surface. 

Lastly, we should like to compare the variational method and the finite-difference 
method. The method used in our paper is the so-called direct variational technique, in 
which the solution is obtained approximately from the extremal condition for a 
functional after replacing the given problem with an equivalent problem. It is applied 
when the governing equations are difficult to solve or the solution of a given partial 
differential equation is not easy. For example, a problem which is governed by a 
partial differential equation becomes the solution of simultaneous ordinary differential 
equations on using the variational method. Its solution is easier than that of the finite- 
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FIGURE 20. Pressure distributions on the bubble surface and gas pressures inside the bubble 
as functions of time. p ~ , , / p ~  = 0.5, 7 = 1.4. -, p&,, T = 0.1; ---, p,/pS,, T = 0.1; ---, 
PclPm9 T = 0. 

difference method, and the computing time is shorter. A finite expansion with 
spherical harmonics as the trial functions is used in our variational method. The 
convergence of the solution depends on the choice of trial function and the number 
of terms in the expansion. If the number of terms in the expansion is increased and 
more reasonable trial functions are adopted, our method can compute the later stages 
of bubble collapse. In our method, it is easy to treat various boundary conditions. In  
particular, in a free boundary-value problem such as the motion of a bubble, the 
formulation of boundary conditions is straightforward and the computational 
program becomes compact. Thus, as shown in this paper, the surface tension and gas 
behaviour within the bubble are easily formulated. 

The Chapman & Plesset method, based on the finite-difference procedure, requires 
numerous irregular meshes to obtain a good approximation of the bubble surface and 
therefore the computational time becomes large. Of course their method can treat the 
effect of surface tension, however it only adds a complicated term. As the mean 
radius of the bubble approaches zero, the convergence of the solution is doubtful. 
This occurs with the finite-difference method as well as with the variational method 
because the effect of surface tension excites higher-mode surface oscillation, so that 
instability of the solution may be introduced. 

From these points of view, our variational method can provide easily and with good 
precision the information on the behaviour of a non-spherical bubble. We believe 
that this method will be very useful. 

4. Conclusions 
The following conclusions are drawn from the present study. 
(i) The results obtained from numerical calculations performed by the variational 

method on the collapse of a non-hemispherical bubble attached to the solid wall are in 
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good agreement with thoseobtained by Chapman & Plesset (1972) for asimilar problem. 
Therefore it may be considered that this variational method will give the same degree 
of accuracy as the finite-difference approximation used by them. The present method 
can readily be applied to complicated problems including the nonlinear effects. In the 
analysis of the collapse of a non-hemispherical bubble, however, it  is difficult to 
simulate the collapse up to a mean radius less than 0.2, because of the occurrence of 
unstable solutions. 

(ii) The variation in the bubble shape during the collapse depends on the initial 
deformation from the hemispherical shape. In  collapse with constant internal pressure, 
a bubble which is initially a prolate hemispheroid changes its shape into an oblate 
hemispheroid, and can form a jet striking the wall. If the initial bubble shape is an 
oblate spheroid, it changes into a ‘bell ’ shape. 

(iii) The effect of surface tension is to accelerate the collapse of a bubble and to 
increase the deformation of the bubble in the final stages of the collapse. For a bubble 
containing non-condensable gas, the surface tension causes the shape oscillation and 
contributes to the increases in velocity and pressure on the bubble surface. 

(iv) The cushioning effect of the internal gas retards the collapse of a bubble. The 
jet is weakened if it forms at all, or the bubble will rebound. 

(v) It is presumed that the jet plays an important role in the cavitation damage 
when a vapour bubble attached to a solid wall collapses. I n  the case of a gaseous 
bubble, it  is not clear whether the jet performs the destructive action or not. 

The authors wish to express their sincere thanks to Mr N. Miura and Miss M. Kuma- 
gai for their assistance in the present study. 
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